Copied to
clipboard

G = C42:10D6order 192 = 26·3

8th semidirect product of C42 and D6 acting via D6/C3=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42:10D6, C4:C4:42D6, (C4xD12):7C2, (C2xC12):10D4, (C2xC4):11D12, D6:1(C4oD4), (C4xC12):5C22, C4.70(C2xD12), C12:D4:42C2, D6:D4:29C2, C42:C2:8S3, D6:C4:51C22, C4.D12:47C2, C12.223(C2xD4), (C2xC6).68C24, C22:C4.92D6, C6.12(C22xD4), (C2xD12):52C22, C4:Dic3:55C22, (C22xC4).381D6, C2.14(C22xD12), C22.19(C2xD12), (C2xC12).143C23, C3:1(C22.19C24), (C2xDic6):61C22, C22.97(S3xC23), C23.21D6:32C2, (C22xS3).18C23, C23.166(C22xS3), (C22xC6).138C23, (S3xC23).104C22, (C22xC12).228C22, (C2xDic3).197C23, (C22xDic3).217C22, (S3xC22xC4):2C2, C2.9(S3xC4oD4), (S3xC2xC4):44C22, (C2xC6).49(C2xD4), (C2xC4oD12):17C2, (C3xC4:C4):52C22, C6.133(C2xC4oD4), (C3xC42:C2):10C2, (C2xC4).575(C22xS3), (C2xC3:D4).99C22, (C3xC22:C4).100C22, SmallGroup(192,1083)

Series: Derived Chief Lower central Upper central

C1C2xC6 — C42:10D6
C1C3C6C2xC6C22xS3S3xC23S3xC22xC4 — C42:10D6
C3C2xC6 — C42:10D6
C1C2xC4C42:C2

Generators and relations for C42:10D6
 G = < a,b,c,d | a4=b4=c6=d2=1, ab=ba, cac-1=ab2, dad=a-1, bc=cb, bd=db, dcd=c-1 >

Subgroups: 904 in 330 conjugacy classes, 115 normal (23 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, C22, S3, C6, C6, C6, C2xC4, C2xC4, C2xC4, D4, Q8, C23, C23, Dic3, C12, C12, D6, D6, C2xC6, C2xC6, C2xC6, C42, C22:C4, C22:C4, C4:C4, C4:C4, C22xC4, C22xC4, C2xD4, C2xQ8, C4oD4, C24, Dic6, C4xS3, D12, C2xDic3, C2xDic3, C3:D4, C2xC12, C2xC12, C22xS3, C22xS3, C22xC6, C42:C2, C4xD4, C22wrC2, C4:D4, C22:Q8, C22.D4, C23xC4, C2xC4oD4, C4:Dic3, D6:C4, C4xC12, C3xC22:C4, C3xC4:C4, C2xDic6, S3xC2xC4, S3xC2xC4, C2xD12, C2xD12, C4oD12, C22xDic3, C2xC3:D4, C22xC12, S3xC23, C22.19C24, C4xD12, D6:D4, C23.21D6, C12:D4, C4.D12, C3xC42:C2, S3xC22xC4, C2xC4oD12, C42:10D6
Quotients: C1, C2, C22, S3, D4, C23, D6, C2xD4, C4oD4, C24, D12, C22xS3, C22xD4, C2xC4oD4, C2xD12, S3xC23, C22.19C24, C22xD12, S3xC4oD4, C42:10D6

Smallest permutation representation of C42:10D6
On 48 points
Generators in S48
(1 26 4 19)(2 23 5 30)(3 28 6 21)(7 32 44 35)(8 40 45 37)(9 34 46 31)(10 42 47 39)(11 36 48 33)(12 38 43 41)(13 22 16 29)(14 27 17 20)(15 24 18 25)
(1 34 13 41)(2 35 14 42)(3 36 15 37)(4 31 16 38)(5 32 17 39)(6 33 18 40)(7 27 47 23)(8 28 48 24)(9 29 43 19)(10 30 44 20)(11 25 45 21)(12 26 46 22)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 18)(2 17)(3 16)(4 15)(5 14)(6 13)(7 47)(8 46)(9 45)(10 44)(11 43)(12 48)(19 25)(20 30)(21 29)(22 28)(23 27)(24 26)(31 37)(32 42)(33 41)(34 40)(35 39)(36 38)

G:=sub<Sym(48)| (1,26,4,19)(2,23,5,30)(3,28,6,21)(7,32,44,35)(8,40,45,37)(9,34,46,31)(10,42,47,39)(11,36,48,33)(12,38,43,41)(13,22,16,29)(14,27,17,20)(15,24,18,25), (1,34,13,41)(2,35,14,42)(3,36,15,37)(4,31,16,38)(5,32,17,39)(6,33,18,40)(7,27,47,23)(8,28,48,24)(9,29,43,19)(10,30,44,20)(11,25,45,21)(12,26,46,22), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,18)(2,17)(3,16)(4,15)(5,14)(6,13)(7,47)(8,46)(9,45)(10,44)(11,43)(12,48)(19,25)(20,30)(21,29)(22,28)(23,27)(24,26)(31,37)(32,42)(33,41)(34,40)(35,39)(36,38)>;

G:=Group( (1,26,4,19)(2,23,5,30)(3,28,6,21)(7,32,44,35)(8,40,45,37)(9,34,46,31)(10,42,47,39)(11,36,48,33)(12,38,43,41)(13,22,16,29)(14,27,17,20)(15,24,18,25), (1,34,13,41)(2,35,14,42)(3,36,15,37)(4,31,16,38)(5,32,17,39)(6,33,18,40)(7,27,47,23)(8,28,48,24)(9,29,43,19)(10,30,44,20)(11,25,45,21)(12,26,46,22), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,18)(2,17)(3,16)(4,15)(5,14)(6,13)(7,47)(8,46)(9,45)(10,44)(11,43)(12,48)(19,25)(20,30)(21,29)(22,28)(23,27)(24,26)(31,37)(32,42)(33,41)(34,40)(35,39)(36,38) );

G=PermutationGroup([[(1,26,4,19),(2,23,5,30),(3,28,6,21),(7,32,44,35),(8,40,45,37),(9,34,46,31),(10,42,47,39),(11,36,48,33),(12,38,43,41),(13,22,16,29),(14,27,17,20),(15,24,18,25)], [(1,34,13,41),(2,35,14,42),(3,36,15,37),(4,31,16,38),(5,32,17,39),(6,33,18,40),(7,27,47,23),(8,28,48,24),(9,29,43,19),(10,30,44,20),(11,25,45,21),(12,26,46,22)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,18),(2,17),(3,16),(4,15),(5,14),(6,13),(7,47),(8,46),(9,45),(10,44),(11,43),(12,48),(19,25),(20,30),(21,29),(22,28),(23,27),(24,26),(31,37),(32,42),(33,41),(34,40),(35,39),(36,38)]])

48 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J2K 3 4A4B4C4D4E4F4G4H4I4J4K4L4M4N4O4P6A6B6C6D6E12A12B12C12D12E···12N
order12222222222234444444444444444666661212121212···12
size1111226666121221111224444666612122224422224···4

48 irreducible representations

dim111111111222222224
type++++++++++++++++
imageC1C2C2C2C2C2C2C2C2S3D4D6D6D6D6C4oD4D12S3xC4oD4
kernelC42:10D6C4xD12D6:D4C23.21D6C12:D4C4.D12C3xC42:C2S3xC22xC4C2xC4oD12C42:C2C2xC12C42C22:C4C4:C4C22xC4D6C2xC4C2
# reps142222111142221884

Matrix representation of C42:10D6 in GL6(F13)

0120000
100000
000100
0012000
0000120
0000012
,
100000
010000
008000
000800
000010
000001
,
1200000
0120000
0012000
000100
0000012
0000112
,
1200000
010000
001000
0001200
0000112
0000012

G:=sub<GL(6,GF(13))| [0,1,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,1,0,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,8,0,0,0,0,0,0,8,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,12,12],[12,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,12,12] >;

C42:10D6 in GAP, Magma, Sage, TeX

C_4^2\rtimes_{10}D_6
% in TeX

G:=Group("C4^2:10D6");
// GroupNames label

G:=SmallGroup(192,1083);
// by ID

G=gap.SmallGroup(192,1083);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,184,675,570,80,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^6=d^2=1,a*b=b*a,c*a*c^-1=a*b^2,d*a*d=a^-1,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<